Towards discovering erratic behavior in robotic process automation with statistical process control

Author:

Průcha PetrORCID

Abstract

AbstractCompanies that frequently use robotic process automation often encounter difficulties in maintaining their RPA portfolio. To address these problems and reduce time spent investigating erratic behavior of RPA bots, developers can benefit from exploring methods from process sciences and applying them to RPA. After a selection process, we examine how variability and deviations impact robotic process automation. Indicators of statistical dispersion are chosen to assess variability and analyze RPA bot behavior. We evaluate the performance of RPA bots on 12 processes, using statistical dispersion as a measure. The results provide evidence that variability is an undesirable form of erratic behavior in RPA, as it strongly correlates with the success rate of the bots. Importantly, the results also show that outliers do not affect the success rate of RPA bots. This research suggests that variable analysis can help describe the behavior of RPA bots and assist developers in addressing erratic behavior. Additionally, by detecting variability, we can more effectively handle exceptions in RPA.

Funder

Technical University of Liberec

Publisher

Springer Science and Business Media LLC

Reference42 articles.

1. Aguirre S, Rodriguez A (2017) Automation of a business process using robotic process automation (RPA): a Case Study. In: Figueroa-García JC, López-Santana ER, Villa-Ramírez JL, Ferro-Escobar R (eds) Applied Computer Sciences in Engineering. Communications in Computer and Information Science. Springer International Publishing, Cham, pp 65–71. https://doi.org/10.1007/978-3-319-66963-2_7

2. Anagnoste S (2017) Robotic automation process - the next major revolution in terms of back office operations improvement. Proc Int Conf Bus Excellence 11:676–686. https://doi.org/10.1515/picbe-2017-0072

3. Axmann B, Harmoko H, Herm L-V, Janiesch C (2021) A Framework of cost drivers for robotic process automation projects. In: González Enríquez J, Debois S, Fettke P, Plebani P, van de Weerd I, Weber I (eds) Business process management: Blockchain and robotic process automation forum. Lecture Notes in Business Information Processing. Springer International Publishing, Cham, pp 7–22. https://doi.org/10.1007/978-3-030-85867-4_2

4. Ayora C, Torres V, Reichert M, Weber B, Pelechano V (2013) Towards Run-Time flexibility for process families: Open issues and Research challenges. In: La Rosa M, Soffer P (eds) Business process management Workshops. Lecture Notes in Business Information Processing. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 477–488. https://doi.org/10.1007/978-3-642-36285-9_49

5. Burattin A (2022) Streaming process mining. In: van der Aalst WMP, Carmona J (eds) Process mining handbook. Lecture notes in business information processing. Springer International Publishing, Cham, pp 349–372. https://doi.org/10.1007/978-3-031-08848-3_11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3