An innovative constitutive material model for predicting high temperature flow behaviour of inconel 625 alloy

Author:

Souza Paul M.,Sivaswamy GiribaskarORCID,Bradley Luke,Barrow Andrew,Rahimi Salaheddin

Abstract

AbstractInconel 625 nickel alloy with its attractive high-temperature strength, excellent corrosion and oxidation resistance is mainly used for critical applications in demanding environments, in both as-cast and wrought conditions. Hot processing of this alloy is crucial for achieving its tailored mechanical properties due to the significant variation in microstructural changes with varying process parameters like temperature, strain, and strain rate. In this study, isothermal hot compression tests were carried out at temperatures ranging from 900 to 1100 °C, and under strain rates ranging from 0.01 to 1 s−1. The flow curves revealed three stages of deformation, including a substantial work-hardening stage followed by dynamic recovery and flow softening. Microstructural observations showed the occurrence of discontinuous dynamic recrystallisation (DDRX) as the dominant recrystallisation mechanism during the flow softening. Microstructural analysis suggested that the DRX was more sensitive to the test temperature as compared to the strain rate. An innovative material's constitutive model was developed, by combining Johnson–Cook (JC) and Avrami approaches, to predict work-hardening, dynamic recovery, and flow softening stages of deformation. The predicted flow behavior was in a good agreement with the experimentally measured data. The developed material model was integrated into DEFORM® 3D finite element (FE) simulation software as a user subroutine for the prediction of deformation behaviour in a double truncated cone (DTC) sample. Comparison between the experimentally measured data and the results of FE simulation on the DTC sample showed a very good convergence, indicating the suitability of the proposed material’s constitutive model for large scale simulations. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3