Analysis of Hot Tensile Fracture and Flow Behaviors of Inconel 625 Superalloy

Author:

Pan Xin-Zhe1,Chen Xiao-Min2,Ning Meng-Tao2

Affiliation:

1. International Institute of Engineering, Changsha University of Science and Technology, Changsha 410114, China

2. College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China

Abstract

In this work, Inconel 625 alloy is explored regarding high-temperature tensile deformation and fracture behaviors at a strain rate of 0.005–0.01 s−1 under a deformation temperature ranging from 700–800 °C. The subsequent analysis focuses on the impact of deformation parameters on flow and fracture characteristics. The fractured surface reveals that ductile fracture is dominated by the nucleation, growth, and coalescence of microvoids as the primary failure mechanisms. The elevated deformation temperature and reduced strain rate stimulate the level of dynamically recrystallized (DRX) structures, resulting in intergranular fractures. The Arrhenius model and the particle swarm optimization-artificial neural network (PSO-ANN) model are developed to predict the hot tensile behavior of the superalloy. It indicates that the PSO-ANN model exhibits a correlation coefficient (R) as high as 0.9967, surpassing the corresponding coefficient of 0.9344 for the Arrhenius model. Furthermore, the relative absolute error of 9.13% (Arrhenius) and 1.85% (PSO-ANN model) are recorded. The developed PSO-ANN model accurately characterizes the flow features of the Inconel 625 superalloy with high precision and reliability.

Funder

Natural Science Foundation of Hunan Province

Changsha City Fund for Distinguished and Innovative Young Scholars

Science Research Project of Hunan Province Office of Education

the College Students’ innovation and entrepreneurship training program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3