The behaviour of thermoplastic and thermoset carbon fibre composites subjected to low-velocity and high-velocity impact

Author:

Liu Haibao,Liu Jun,Ding Yuzhe,Zheng Jie,Kong Xiangshao,Zhou Jin,Harper Lee,Blackman Bamber R. K.,Kinloch Anthony J.,Dear John P.ORCID

Abstract

AbstractThe present paper describes the results from experimental and theoretical modelling studies on the behaviour of continuous carbon fibre/polymer matrix composites subjected to a relatively low-velocity or high-velocity impact, using a rigid, metallic impactor. Drop-weight and gas-gun tests are employed to conduct the low-velocity and high-velocity impact experiments, respectively. The carbon fibre composites are based upon a thermoplastic poly(ether–ether ketone) matrix (termed CF/PEEK) or a thermoset toughened epoxy matrix (termed CF/Epoxy), which has the same fibre architecture of a cross-ply [03/903]2s lay-up. The studies clearly reveal that the CF/PEEK composites exhibit the better impact performance. Also, at the same impact energy of 10.5 ± 0.3 J, the relatively high-velocity test at 54.4 ± 1.0 m s−1 leads to more damage in both types of composite than observed from the low-velocity test where the impactor struck the composites at 2.56 m s−1. The computationally efficient, two-dimensional, elastic, finite element model that has been developed is generally successful in capturing the essential details of the impact test and the impact damage in the composites, and has been used to predict the loading response of the composites under impact loading.

Funder

Aviation Industry of China - FAI

Aviation Industry of China - ASRI

Imperial College London

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3