The Relationship Between the Extent of Indentation and Impact Damage in Carbon-Fibre Reinforced-Plastic Composites after a Low-Velocity Impact

Author:

Brooks R. A.,Liu J.,Hall Z. E. C.,Joesbury A. M.,Harper L. T.,Liu H.,Kinloch A. J.,Dear J. P.

Abstract

AbstractThe present paper investigates the low-velocity impact behaviour of carbon-fibre reinforced-plastic (CFRP) composite panels and the damage incurred when they are subjected to a single impact. The relationship between the depth of permanent surface indentation that results and the associated area of interlaminar delamination damage is investigated for two different thicknesses of composite panels. In particular, the delamination damage area increases with impact energy for both thicknesses of composite panel that were studied. Likewise, the indentation depth also increases with increasing impact energy, again for both thicknesses of CFRP panels. It is shown that the indentation depth, at the centre of the indentation, may be used to provide an indication of the extent of delamination damage within the CFRP panel after impact. Indeed, from plotting the indentation depth versus the interlaminar delamination normalised by the thickness of the panel area there is shown to be a unique ‘master’ relationship, with a positive intercept indicating that the indentation damage seems to result before delamination damage initiates. Thus, for both thicknesses of CFRP panels, it is suggested that the indentation process is a precursor to interlaminar delamination damage.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3