Abstract
AbstractEffects of microstructure and oxidation on fatigue crack initiation and early propagation processes were investigated in RR1000 turbine disc alloy with different γ′ distributions and carbide distributions on the grain boundary. Fatigue tests were carried out under three-point bending and trapezoidal waveform loading (with a 90 s dwell) at 650 °C in air. The failure mode in both γ′ variants is clearly characterised by intergranular features. A number of fatigue cracks are seen to initiate at grain boundaries with bulged Co-rich oxides at the surface and/or interfaces between carbides and grain boundaries, resulting from oxidation damage assisted by applied loading. Reduced lifetime is closely linked to significant intergranular crack initiation and frequent consequent crack coalescence events, which results in enhanced fatigue crack growth (FCG) rates. The extent of intergranular features and enhanced FCG are more marked where more continuous carbides exist at the grain boundary.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献