High-Temperature Fatigue of Additively Manufactured Inconel 718: A Short Review

Author:

Alfred Samuel Onimpa1,Amiri Mehdi1

Affiliation:

1. George Mason University Department of Mechanical Engineering, , Fairfax, VA 22030

Abstract

Abstract With the increasing interest in adopting additively manufactured (AM) IN718 for high-temperature applications, driven by the design and manufacturing flexibility offered by AM technologies, understanding its fatigue performance is crucial before full-scale adoption. This article reviews the recent literature on the high-temperature fatigue behavior of AM IN718. The review focuses on two primary stages of fatigue damage: fatigue crack initiation and fatigue crack growth. Notably, most existing studies have concentrated on fatigue crack initiation, and thus, this review emphasizes this aspect. In the fatigue crack initiation stage, discrepancies in low cycle fatigue (LCF) and high cycle fatigue (HCF) life performances are observed in the literature. Some studies have shown that the average room temperature fatigue life of AM IN718 is superior or comparable to that at high temperatures in the LCF regime. Conversely, in the HCF regime, high-temperature fatigue life is sometimes found to be superior to that at room temperature. However, other studies indicate no clear trend regarding the effect of temperature on the HCF life. Although various mechanisms have been proposed to either improve or degrade fatigue performance across the LCF, HCF, and very high cycle fatigue (VHCF) regimes, the underlying reasons for the distinct behaviors in these regimes remain unclear. Competing mechanisms, such as surface oxide formation and thermally driven dislocations glide, can potentially enhance or reduce fatigue life. However, the interaction and control of these mechanisms over the fatigue strength of AM IN718 are not yet fully understood. Systematic studies are required to elucidate their roles in high-temperature fatigue. Microstructural investigations have suggested that controlling the formation and precipitation of deleterious secondary phases is crucial for tailoring the high-temperature fatigue strength of AM IN718. Therefore, it is imperative to design heat treatment protocols informed by a comprehensive understanding of phase formation kinetics to improve the high-temperature fatigue performance of AM IN718 compared to their traditionally manufactured counterparts. This is particularly important for IN718 parts manufactured using directed energy deposition technology, which currently lacks standardized heat treatment procedures. The review also identifies open research areas and provides recommendations for future work to address these gaps.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3