Optimisation of processing conditions during CVD growth of 2D WS2 films from a chloride precursor

Author:

Campbell William R.ORCID,Reale Francesco,Sundaram Ravi,Bending Simon J.

Abstract

AbstractMonolayer tungsten disulphide (WS2) is a direct band gap semiconductor which holds promise for a wide range of optoelectronic applications. The large-area growth of WS2 has previously been successfully achieved using a W(CO)6 precursor, however, this is flammable and a potent source of carbon monoxide (CO) upon decomposition. To address this issue, we have developed a process for the wafer-scale growth of monolayer WS2 from a tungsten hexachloride (WCl6) precursor in a commercial cold-wall CVD reactor. In comparison to W(CO)6, WCl6 is less toxic and less reactive and so lends itself better to the large-scale CVD growth of 2D layers. We demonstrate that a post-growth H2S anneal can lead to a dramatic improvement in the optical quality of our films as confirmed by photoluminescence (PL) and Raman measurements. Optimised films exhibit PL exciton emission peaks with full width at half maximum of 51 ± 2 meV, comparable to other state-of-the-art methods. We demonstrate that our WS2 films can be readily transferred from the sapphire growth substrate to a Si/SiO2 target substrate with no detectable degradation in quality using a polystyrene support layer. Our approach represents a promising step towards the industrial-scale fabrication of p-n junctions, photodetectors and transistors based on monolayer WS2.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3