Unraveling the temperature-dependent plastic deformation mechanisms of polycrystalline Ta implants through numerical analysis of grain boundary dynamics

Author:

Kardani A.,Montazeri A.,Urbassek H. M.ORCID

Abstract

AbstractNanostructured tantalum (Ta)-based dental implants have recently attracted significant attention thanks to their superior biocompatibility and bioactivity as compared to their titanium-based counterparts. While the biological and chemical aspects of Ta implants have been widely studied, their mechanical features have been investigated more rarely. Additionally, the mechanical behavior of these implants and, more importantly, their plastic deformation mechanisms are still not fully understood. Accordingly, in the current research, molecular dynamics simulation as a powerful tool for probing the atomic-scale phenomena is utilized to explore the microstructural evolution of pure polycrystalline Ta samples under tensile loading conditions. Various samples with an average grain size of 2–10 nm are systematically examined using various crystal structure analysis tools to determine the underlying deformation mechanisms. The results reveal that for the samples with an average grain size larger than 8 nm, twinning and dislocation slip are the main sources of any plasticity induced within the sample. For finer-grained samples, the activity of grain boundaries—including grain elongation, rotation, migration, and sliding—are the most important mechanisms governing the plastic deformation. Finally, the temperature-dependent Hall–Petch breakdown is thoroughly examined for the nanocrystalline samples via identification of the grain boundary dynamics.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Kaiserslautern

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3