Synthesis, characterisation and thermal behaviour of Cu-based nano-multilayer

Author:

Czagány M.,Varanasi D.,Sycheva A.,Janovszky D.,Koncz-Horváth D.,Kristaly F.,Baumli P.,Kaptay G.

Abstract

AbstractCu/AlN–Al2O3 nano-multilayer (NML) was deposited by magnetron sputtering method on 42CrMo4 steel samples, starting with a 15 nm AlN–Al2O3 layer and followed by 200 alternating layers of 5 nm thick Cu and 5 nm thick AlN–Al2O3 layers. The microstructure and thermal behaviour of the as-deposited and heat-treated multilayer was studied. Starting from about 400 °C, extensive coarsening of Cu nanocrystallites and the migration of Cu within the multilayer were observed via solid-state diffusion. Part of the initial Cu even formed micron-sized reservoirs within the NML. Due to increased temperature and to the different heat expansion coefficients of Cu and the AlN–Al2O3, the latter cracked and Cu appeared on the top surface of the NML at around 250 °C. Below 900 °C, the transport of Cu to the top surface of the NML probably took place as a solid-state flow, leading to faceted copper micro-crystals. However, above 900 °C, the Cu micro-crystals found on the top of the NML have rounded shape, so they were probably formed by pre-melting of nano-layered Cu due to its high specific surface area in the NML. Even if the Cu crystals appear on the top surface of the NML via solid-state flow without pre-melting, the Cu crystals on the top surface of the NML can be potentially used in joining applications at and above 250 °C.

Funder

University of Miskolc

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3