A Molecular Dynamics Study of Ag-Ni Nanometric Multilayers: Thermal Behavior and Stability

Author:

Baras Florence1ORCID,Politano Olivier1ORCID,Li Yuwei1,Turlo Vladyslav2ORCID

Affiliation:

1. ICB, UMR 6303 CNRS-Université de Bourgogne, 9 Avenue A. Savary, 47870 Dijon, France

2. Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, 3602 Thun, Switzerland

Abstract

Nanometric multilayers composed of immiscible Ag and Ni metals were investigated by means of molecular dynamics simulations. The semi-coherent interface between Ag and Ni was examined at low temperatures by analyzing in-plane strain and defect formation. The relaxation of the interface under annealing conditions was also considered. With increasing temperature, a greater number of atomic planes participated in the interface, resulting in enhanced mobility of Ag and Ni atoms, as well as partial dissolution of Ni within the amorphous Ag. To mimic polycrystalline layers with staggered grains, a system with a triple junction between a silver single layer and two grains of nickel was examined. At high temperatures (900 K and 1000 K), the study demonstrated grain boundary grooving. The respective roles of Ni and Ag mobilities in the first steps of grooving dynamics were established. At 1100 K, a temperature close but still below the melting point of Ag, the Ag layer underwent a transition to an amorphous/premelt state, with Ni grains rearranging themselves in contact with the amorphous layer.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3