Abstract
AbstractThe characterization of materials surface is essential, as the initial in vivo response is highly dependent on surface properties. Surface topography is a key aspect that influences the response of cells to products resulting from interaction with the surface of a titanium alloy, including parameters such as adhesion, spread, migration, proliferation, and differentiation of cells. Various surface modifications are used to improve the interface properties between MC3T3 and NHDF cells and the Ti–13Nb–13Zr-based surface. Among the techniques discussed in this paper, scanning electron microscopy, laser confocal scanning microscopy, and computed tomography are adequate to investigate materials topography at different scale levels. Chemical characterization of the outer layers of Ti–13Nb–13Zr samples was performed with X-ray photoelectron spectrometry. Studies have shown that the surfaces resulting from the treatment enabling the formation of titanium oxide and zirconium oxide show the lowest cytotoxicity. Implants made from the new generation of titanium alloy, not containing toxic elements, with the use of surface modification could be an essential innovation in implantology.
Funder
Narodowe Centrum Badań i Rozwoju
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献