Indeterminacy estimates, eigenfunctions and lower bounds on Wasserstein distances

Author:

De Ponti NicolòORCID,Farinelli Sara

Abstract

AbstractIn the paper we prove two inequalities in the setting of $$\mathsf {RCD}(K,\infty )$$ RCD ( K , ) spaces using similar techniques. The first one is an indeterminacy estimate involving the p-Wasserstein distance between the positive part and the negative part of an $$L^{\infty }$$ L function and the measure of the interface between the positive part and the negative part. The second one is a conjectured lower bound on the p-Wasserstein distance between the positive and negative parts of a Laplace eigenfunction.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference32 articles.

1. Ambrosio , L.: Calculus, heat flow and curvature-dimension bounds in metric measure spaces. In: Proceedings of the ICM Rio de Janeiro, Vol. 1, pp. 301–340(2018)

2. Ambrosio, L., Gigli, N., Mondino, A., Rajala, T.: Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure. Trans. Amer. Math. Soc. 367(7), 4661–4701 (2015)

3. Ambrosio, L., Gigli, N., Savaré, G.: Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab. 43(1), 339–404 (2015)

4. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163, 1405–1490 (2014)

5. Bakry, D.: Functional inequalities for Markov semigroups, Probability Measures on Groups: Recent Directions and Trends, 91–147. Tata Inst. Fund. Res, Mumbai (2006)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pleijel nodal domain theorem in non-smooth setting;Transactions of the American Mathematical Society, Series B;2024-09-13

2. Unique continuation problem on RCD Spaces. I;Geometriae Dedicata;2024-02-15

3. Minimizing Optimal Transport for Functions with Fixed-Size Nodal Sets;Journal of Nonlinear Science;2023-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3