Regularity theory for non-autonomous problems with a priori assumptions

Author:

Hästö PeterORCID,Ok Jihoon

Abstract

AbstractWe study weak solutions and minimizers u of the non-autonomous problems $${\text {div}} A(x, Du)=0$$ div A ( x , D u ) = 0 and $$\min _v \int _\Omega F(x,Dv)\,dx$$ min v Ω F ( x , D v ) d x with quasi-isotropic (pq)-growth. We consider the case that u is bounded, Hölder continuous or lies in a Lebesgue space and establish a sharp connection between assumptions on A or F and the corresponding norm of u. We prove a Sobolev–Poincaré inequality, higher integrability and the Hölder continuity of u and Du. Our proofs are optimized and streamlined versions of earlier research that can more readily be further extended to other settings. Connections between assumptions on A or F and assumptions on u are known for the double phase energy $$F(x, \xi )=|\xi |^p + a(x)|\xi |^q$$ F ( x , ξ ) = | ξ | p + a ( x ) | ξ | q . We obtain slightly better results even in this special case. Furthermore, we also cover perturbed variable exponent, Orlicz variable exponent, degenerate double phase, Orlicz double phase, triple phase, double variable exponent as well as variable exponent double phase energies and the results are new in most of these special cases.

Funder

Jenny ja Antti Wihurin Rahasto

National research foundation of korea

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference54 articles.

1. Acerbi, E., Fusco, N.: An approximation lemma for $$W^{1, p}$$ functions, Material instabilities in continuum mechanics (Edinburgh, 1985–1986), 1–5. Oxford Univ. Press, New York (1988)

2. Baasandorj, S., Byun, S.S.: Regularity for Orlicz phase problems, Memoirs of American Mathematical Society, to appear. arXiv:2106.15131

3. Baasandorj, S., Byun, S.S., Lee, H.-S.: Gradient estimates for Orlicz double phase problems with variable exponents. Nonlinear Anal. 221, 112891 (2022)

4. Baasandorj, S., Byun, S.S., Oh, J.: Gradient estimates for multi-phase problems. Calc Var. Partial Differential Equ. 60, 104 (2021)

5. Balci, AKh., Diening, L., Surnachev, M.: New examples on Lavrentiev gap using fractals. Calc Var. Partial Differential Equ. 59, 180 (2020)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3