The Stokes resolvent problem: optimal pressure estimates and remarks on resolvent estimates in convex domains

Author:

Tolksdorf Patrick

Abstract

AbstractThe Stokes resolvent problem $$\lambda u - \Delta u + \nabla \phi = f$$ λ u - Δ u + ϕ = f with $${\text {div}}(u) = 0$$ div ( u ) = 0 subject to homogeneous Dirichlet or homogeneous Neumann-type boundary conditions is investigated. In the first part of the paper we show that for Neumann-type boundary conditions the operator norm of $$\mathrm {L}^2_{\sigma } (\Omega ) \ni f \mapsto \phi \in \mathrm {L}^2 (\Omega )$$ L σ 2 ( Ω ) f ϕ L 2 ( Ω ) decays like $$|\lambda |^{- 1 / 2}$$ | λ | - 1 / 2 which agrees exactly with the scaling of the equation. In comparison to that, the operator norm of this mapping under Dirichlet boundary conditions decays like $$|\lambda |^{- \alpha }$$ | λ | - α for $$0 \le \alpha \le 1 / 4$$ 0 α 1 / 4 and we show optimality of this rate, thereby, violating the natural scaling of the equation. In the second part of this article, we investigate the Stokes resolvent problem subject to homogeneous Neumann-type boundary conditions if the underlying domain $$\Omega $$ Ω is convex. Invoking a famous result of Grisvard (Elliptic problems in nonsmooth domains. Monographs and studies in mathematics, Pitman, 1985), we show that weak solutions u with right-hand side $$f \in \mathrm {L}^2 (\Omega ; {\mathbb {C}}^d)$$ f L 2 ( Ω ; C d ) admit $$\mathrm {H}^2$$ H 2 -regularity and further prove localized $$\mathrm {H}^2$$ H 2 -estimates for the Stokes resolvent problem. By a generalized version of Shen’s $$\mathrm {L}^p$$ L p -extrapolation theorem (Shen in Ann Inst Fourier (Grenoble) 55(1):173–197, 2005) we establish optimal resolvent estimates and gradient estimates in $$\mathrm {L}^p (\Omega ; {\mathbb {C}}^d)$$ L p ( Ω ; C d ) for $$2d / (d + 2)< p < 2d / (d - 2)$$ 2 d / ( d + 2 ) < p < 2 d / ( d - 2 ) (with $$1< p < \infty $$ 1 < p < if $$d = 2$$ d = 2 ). This interval is larger than the known interval for resolvent estimates subject to Dirichlet boundary conditions (Shen in Arch Ration Mech Anal 205(2):395–424, 2012) on general Lipschitz domains.

Funder

Johannes Gutenberg-Universität Mainz

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3