Stability of Time-Dependent Motions for Fluid–Rigid Ball Interaction

Author:

Hishida ToshiakiORCID

Abstract

AbstractWe aim at the stability of time-dependent motions, such as time-periodic ones, of a rigid body in a viscous fluid filling the exterior to it in 3D. The fluid motion obeys the incompressible Navier–Stokes system, whereas the motion of the body is governed by the balance for linear and angular momentum. Both motions are affected by each other at the boundary. Assuming that the rigid body is a ball, we adopt a monolithic approach to deduce $$L^q$$ L q $$L^r$$ L r decay estimates of solutions to a non-autonomous linearized system. We then apply those estimates to the full nonlinear initial value problem to find temporal decay properties of the disturbance. Although the shape of the body is not allowed to be arbitrary, the present contribution is the first attempt at analysis of the large time behavior of solutions around nontrivial basic states, that can be time-dependent, for the fluid–structure interaction problem and provides us with a stability theorem which is indeed new even for steady motions under the self-propelling condition or with wake structure.

Funder

Japan Society for the Promotion of Science London

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3