Author:
Izydorek Marek,Janczewska Joanna,Waterstraat Nils
Abstract
AbstractWe will be concerned with the existence of homoclinics for Lagrangian systems in $${\mathbb {R}}^N$$
R
N
($$N\ge 3 $$
N
≥
3
) of the form $$\frac{d}{dt}\left( \nabla \Phi (\dot{u}(t))\right) +\nabla _{u}V(t,u(t))=0$$
d
dt
∇
Φ
(
u
˙
(
t
)
)
+
∇
u
V
(
t
,
u
(
t
)
)
=
0
, where $$t\in {\mathbb {R}}$$
t
∈
R
, $$\Phi {:}\,{\mathbb {R}}^N\rightarrow [0,\infty )$$
Φ
:
R
N
→
[
0
,
∞
)
is a G-function in the sense of Trudinger, $$V{:}\,{\mathbb {R}}\times \left( {\mathbb {R}}^N{\setminus }\{\xi \} \right) \rightarrow {\mathbb {R}}$$
V
:
R
×
R
N
\
{
ξ
}
→
R
is a $$C^2$$
C
2
-smooth potential with a single well of infinite depth at a point $$\xi \in {\mathbb {R}}^N{\setminus }\{0\}$$
ξ
∈
R
N
\
{
0
}
and a unique strict global maximum 0 at the origin. Under a strong force type condition around the singular point $$\xi $$
ξ
, we prove the existence of a homoclinic solution $$u{:}\,{\mathbb {R}}\rightarrow {\mathbb {R}}^N{\setminus }\{\xi \}$$
u
:
R
→
R
N
\
{
ξ
}
via minimization of an action integral.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference29 articles.
1. Abbondandolo, A.: Lectures on the free period Lagrangian action functional. J. Fixed Point Theory Appl. 13, 397–430 (2013)
2. Ambrosetti, A., Coti Zelati, V.: Periodic Solutions of Singular Lagrangian Systems. Birkhäuser, Basel (1993)
3. Aubin, J.P.: Optima and Equilibria, Graduate Text in Mathematics, vol. 140. Springer, Berlin (1993)
4. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics, vol. 140. Academic Press, New York (2009)
5. Byeon, J., Montecchiari, P., Rabinowitz, P.H.: A double well potential system. Anal. PDE 9(7), 1737–1772 (2016)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献