Periodic solutions of Lagrangian systems under small perturbations

Author:

Izydorek Marek1ORCID,Janczewska Joanna1ORCID,Waterstraat Nils2ORCID

Affiliation:

1. Institute of Applied Mathematics, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland

2. Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Mathematik, Halle (Saale) 06099, Germany

Abstract

In this paper, we consider the existence of periodic solutions of Lagrangian systems of the form [Formula: see text], where [Formula: see text] is a [Formula: see text]-function in the sense of Trudinger, [Formula: see text] are [Formula: see text]-smooth, [Formula: see text]-periodic in the time variable [Formula: see text] and [Formula: see text] is a real parameter. We prove the existence of a [Formula: see text]-periodic solution [Formula: see text] for any sufficiently small [Formula: see text], and show that the found solutions converge to a [Formula: see text]-periodic solution of the unperturbed system if [Formula: see text] tends to [Formula: see text]. Let us stress that our theorem only makes a natural assumption on the potential [Formula: see text] and no additional assumption on [Formula: see text] except that it is continuously differentiable. Its proof requires to work in a rather unusual (mixed) Orlicz–Sobolev space setting, which bears several challenges.

Funder

Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3