The Dirichlet problem for the Monge–Ampère equation on Hermitian manifolds with boundary

Author:

Kołodziej Sławomir,Nguyen Ngoc Cuong

Abstract

AbstractWe study weak quasi-plurisubharmonic solutions to the Dirichlet problem for the complex Monge–Ampère equation on a general Hermitian manifold with non-empty boundary. We prove optimal subsolution theorems: for bounded and Hölder continuous quasi-plurisubharmonic functions. The continuity of the solution is proved for measures that are well dominated by capacity, for example measures with $$L^p$$ L p , $$p>1$$ p > 1 densities, or moderate measures in the sense of Dinh–Nguyen–Sibony.

Funder

Narodowe Centrum Nauki

KAIST

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference48 articles.

1. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge–Ampère operator. Invent. Math. 37, 1–44 (1976)

2. Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–40 (1982)

3. Berman, R., Demailly, J.-P.: Regularity of plurisubharmonic upper envelopes in big cohomology classes. In: Itenberg, I., Jöricke, B., Passare, M. (eds.) Proceedings of the Symposium “Perspectives in Analysis, Geometry and Topology’’ in Honor of Oleg Viro (Stockholm University, May 2008), Progress in Mathematics, vol. 296, pp. 39–66. Birkhäuser/Springer, Boston (2012)

4. Błocki, Z.: Estimates for the complex Monge–Ampère operator. Bull. Polish Acad. Sci. Math. 41, 151–157 (1993)

5. Błocki, Z.: On geodesics in the space of Kähler metrics. In: Advances in Geometric Analysis, Advanced Lectures in Mathematics (ALM), vol. 21, pp. , 3–19. International Press, Somerville

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regularity of the Siciak-Zaharjuta extremal function on compact Kähler manifolds;Transactions of the American Mathematical Society;2024-08-30

2. Degenerate Complex Monge–Ampère Equations on Some Compact Hermitian Manifolds;The Journal of Geometric Analysis;2024-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3