Author:
Alehyane Omar,Lu Chinh H.,Salouf Mohammed
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Aubin, T.: Équations du type Monge–Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. 102(1), 63–95 (1978)
2. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge–Ampère equation. Invent. Math. 37(1), 1–44 (1976)
3. Berman, R.J.: From Monge–Ampère equations to envelopes and geodesic rays in the zero temperature limit. Math. Z. 291(1–2), 365–394 (2019)
4. Berman, R.J., Berndtsson, B.: Convexity of the $$K$$-energy on the space of Kähler metrics and uniqueness of extremal metrics. J. Am. Math. Soc. 30(4), 1165–1196 (2017)
5. Berman, R.J., Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties. J. Reine Angew. Math. 751, 27–89 (2019)