Abstract
AbstractWe consider autonomous integral functionals of the form $$\begin{aligned} {\mathcal {F}}[u]:=\int _\varOmega f(D u)\,dx \quad \text{ where } u:\varOmega \rightarrow {\mathbb {R}}^N, N\ge 1, \end{aligned}$$
F
[
u
]
:
=
∫
Ω
f
(
D
u
)
d
x
where
u
:
Ω
→
R
N
,
N
≥
1
,
where the convex integrand f satisfies controlled (p, q)-growth conditions. We establish higher gradient integrability and partial regularity for minimizers of $${\mathcal {F}}$$
F
assuming $$\frac{q}{p}<1+\frac{2}{n-1}$$
q
p
<
1
+
2
n
-
1
, $$n\ge 3$$
n
≥
3
. This improves earlier results valid under the more restrictive assumption $$\frac{q}{p}<1+\frac{2}{n}$$
q
p
<
1
+
2
n
.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献