Local boundedness of weak solutions to elliptic equations with $ p, q- $growth
Author:
Affiliation:
1. Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 - Bologna, Italy
2. Dipartimento di Matematica e Informatica "U. Dini", Università di Firenze, Viale Morgagni 67/A, 50134 - Firenze, Italy
Abstract
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Mathematical Physics,Analysis
Reference60 articles.
1. P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var., 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z
2. L. Beck, G. Mingione, Lipschitz bounds and non-uniform ellipticity, Commun. Pure Appl. Math., 73 (2020), 944–1034. https://doi.org/10.1002/cpa.21880
3. P. Bella, M. Schäffner, On the regularity of minimizers for scalar integral functionals with $(p, q)-$ growth, Anal. PDE, 13 (2020), 2241–2257. https://doi.org/10.2140/apde.2020.13.2241
4. P. Bella, M. Schäffner, Local boundedness and Harnack inequality for solutions of linear nonuniformly elliptic equations, Commun. Pure Appl. Math., 74 (2021), 453–477. https://doi.org/10.1002/cpa.21876
5. S. Biagi, G. Cupini, E. Mascolo, Regularity of quasi-minimizers for non-uniformly elliptic integrals, J. Math. Anal. Appl., 485 (2020), 123838. https://doi.org/10.1016/j.jmaa.2019.123838
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Singular double phase problems with convection;Nonlinear Analysis: Real World Applications;2025-02
2. Least energy sign-changing solution for degenerate Kirchhoff double phase problems;Journal of Differential Equations;2024-12
3. Regularity results to a class of elliptic equations with explicit $u$-dependence and Orlicz growth;Advances in Differential Equations;2024-09-01
4. Local boundedness of minimizers under unbalanced Orlicz growth conditions;Journal of Differential Equations;2024-08
5. Concentration of solutions for non-autonomous double-phase problems with lack of compactness;Zeitschrift für angewandte Mathematik und Physik;2024-07-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3