Solenoidal extensions in domains with obstacles: explicit bounds and applications to Navier–Stokes equations

Author:

Fragalà Ilaria,Gazzola Filippo,Sperone Gianmarco

Abstract

AbstractWe introduce a new method for constructing solenoidal extensions of fairly general boundary data in (2d or 3d) cubes that contain an obstacle. This method allows us to provide explicit bounds for the Dirichlet norm of the extensions. It runs as follows: by inverting the trace operator, we first determine suitable extensions, not necessarily solenoidal, of the data; then we analyze the Bogovskii problem with the resulting divergence to obtain a solenoidal extension; finally, by solving a variational problem involving the infinity-Laplacian and using ad hoc cutoff functions, we find explicit bounds in terms of the geometric parameters of the obstacle. The natural applications of our results lie in the analysis of inflow–outflow problems, in which an explicit bound on the inflow velocity is needed to estimate the threshold for uniqueness in the stationary Navier–Stokes equations and, in case of symmetry, the stability of the obstacle immersed in the fluid flow.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference38 articles.

1. Acosta, G., Durán, R.G.: Divergence Operator and Related Inequalities. Springer, Berlin (2017)

2. Babuška, I., Aziz, A.: Survey lectures on the mathematical foundations of the finite element method. In: Aziz, A.K. (ed.) The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp 1–359. Academic Press, Cambridge (1972)

3. Bogovskii, M.: Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Doklady Akademii Nauk SSSR 248(5), 1037–1040 (1979)

4. Bogovskii, M.: Solution of some vector analysis problems connected with operators div and grad. In Trudy Seminar S.L. Sobolev, volume 80, pp. 5–40. Akademia Nauk SSR, Sibirskoe Otdelenie Matematiki, Novosibirsk, (1980)

5. Bonheure, D., Gazzola, F., Sperone, G.: Eight(y) mathematical questions on fluids and structures. Rendiconti Lincei - Matematica e Applcazioni 30, 759–815 (2019)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3