A new detailed explanation of the Tacoma collapse and some optimization problems to improve the stability of suspension bridges

Author:

Gazzola Filippo1,Jleli Mohamed2,Samet Bessem2

Affiliation:

1. Dipartimento di Matematica del Politecnico, Piazza L. da Vinci 32 - 20133 Milano, Italy

2. Department of Mathematics, King Saud University, Riyadh, Saudi Arabia

Abstract

<abstract><p>We give a new full explanation of the Tacoma Narrows Bridge collapse, occurred on November 7, 1940. Our explanation involves both structural phenomena, such as parametric resonances, and sophisticated mathematical tools, such as the Floquet theory. Contrary to all previous attempts, our explanation perfectly fits, both qualitatively and quantitatively, with what was observed that day. With this explanation at hand, we set up and partially solve some optimal control and shape optimization problems (both analytically and numerically) aiming to improve the stability of bridges. The control parameter to be optimized is the strength of a partial damping term whose role is to decrease the energy within the deck. Shape optimization intends to give suggestions for the design of future bridges.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Mathematical Physics,Analysis

Reference107 articles.

1. B. Akesson, Understanding bridges collapses, London: CRC Press, Taylor & Francis Group, 2008.

2. O. H. Ammann, T. von Kármán, G. B. Woodruff, The failure of the Tacoma Narrows Bridge, Technical Report, Washington D.C.: Federal Works Agency, 1941.

3. Annales des ponts et chaussées: Rapport de la Commission d'enquête nommée par arrêté de M. le Préfet de Maine-et-Loire, en date du 20 avril 1850, pour rechercher les causes et les circonstances qui ont amené la chûte du pont suspendu de la Baisse-Chaîne, 1850.

4. Anonymous, Fall of the Broughton Suspension Bridge, near Manchester, The Manchester Guardian, Vol. 9, No. 53, 1831,384–389.

5. P. R. S. Antunes, F. Gazzola, Some solutions of minimaxmax problems for the torsional displacements of rectangular plates, ZAMM-Z. Angew. Math. Mech., 98 (2018), 1974–1991. http://doi.org/10.1002/zamm.201800065

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3