Author:
Ozawa Ryunosuke,Yokota Takumi
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference27 articles.
1. Ambrosio, L., Gigli, N., Mondino, A., Rajala, T.: Riemannian Ricci curvature lower bounds in metric measure spaces with $$\sigma $$-finite measure. Trans. Am. Math. Soc. 367(7), 4661–4701 (2015)
2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2005)
3. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163(7), 1405–1490 (2014)
4. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2014)
5. Bogachev, V.I.: Measure Theory, vol. I, II. Springer, Berlin (2007)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献