Stability of Curvature-Dimension Condition for Negative Dimensions Under Concentration Topology

Author:

Oshima ShunORCID

Abstract

AbstractIn this paper, we prove the stability of metric measure spaces satisfying the curvature-dimension condition for negative dimensions under the concentration topology. This result is an analog of the result by Funano–Shioya with respect to the dimension parameter.

Funder

JST, the establishment of university fellowships towards the creation of science technology innovation

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

Reference14 articles.

1. Funano, K., Shioya, T.: Concentration, Ricci curvature, and eigenvalues of Laplacian. Geom. Funct. Anal. 23(3), 888–936 (2013)

2. Gigli, N., Mondino, A., Savarè, G.: Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc. Lond. Math. Soc. (3) 111(5), 1071–1129 (2015)

3. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces, Reprint of the 2001 English edition, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA (2007). Based on the 1981 French original; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates

4. Kazukawa, D., Ozawa, R., Suzuki, N.: Stabilities of rough curvature dimension condition. J. Math. Soc. Jpn. 72(2), 541–567 (2020)

5. Mathematical Surveys and Monographs;M Ledoux,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3