Author:
Gaudiello Antonio,Gómez Delfina,Pérez-Martínez Maria-Eugenia
Abstract
AbstractWe consider a 3d multi-structure composed of two joined perpendicular thin films: a vertical one with small thickness $$h^a_n$$
h
n
a
and a horizontal one with small thickness $$h^b_n$$
h
n
b
. We study the asymptotic behavior, as $$h^a_n$$
h
n
a
and $$h^b_n$$
h
n
b
tend to zero, of an eigenvalue problem for the Laplacian defined on this multi-structure. We shall prove that the limit problem depends on the value $$q=\displaystyle {\lim _n\dfrac{h^b_n}{h^a_n}.}$$
q
=
lim
n
h
n
b
h
n
a
.
Precisely, we pinpoint three different limit regimes according to q belonging to $$]0,+\infty [$$
]
0
,
+
∞
[
, q equal to $$+\infty $$
+
∞
, or q equal to 0. We identify the limit problems and we also obtain $$H^1$$
H
1
-strong convergence results.
Funder
Università degli Studi della Campania Luigi Vanvitelli
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference23 articles.
1. Cancedda, A., Chiadó Piat, V., Nazarov, S.A., Taskinen, J.: Spectral gaps for the linear water-wave problem in a channel with thin structures. Math. Nachr. 295(4), 657–682 (2022)
2. Carbone, L., Chacouche, K., Gaudiello, A.: Fin junction of ferroelectric thin films. Adv. Calc. Var. 11(4), 341–371 (2018)
3. Ciarlet, P.G., Destuynder, P.: A justification of the two-dimensional linear plate model. J. Mécanique 18(2), 315–344 (1979)
4. Ciarlet, P.G., Kesavan, S.: Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory. Comput. Methods Appl. Mech. Engrg. 26, 149–172 (1981)
5. Cioranescu, D., Damlamian, A., Griso, G.: The Periodic Unfolding Method Theory and Applications to Partial Differential Problems. Springer, Singapore (2018)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献