Asymptotic Domain Decomposition Method for Approximation the Spectrum of the Diffusion Operator in a Domain Containing Thin Tubes

Author:

Amosov Andrey1ORCID,Gómez Delfina2ORCID,Panasenko Grigory3ORCID,Pérez-Martinez Maria-Eugenia4ORCID

Affiliation:

1. Department of Mathematical and Computer Modelling, National Research University “Moscow Power Engineering Institute”, Krasnokazarmennay St. 14, 111250 Moscow, Russia

2. Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, Av. de los Castros s/n., 39005 Santander, Spain

3. Institute of Applied Mathematics, Vilnius University, Naugarduko Str., 24, 03225 Vilnius, Lithuania

4. Departamento Mathematica Aplicada y Ciencias de la Computación, Universidad de Cantabria, Av. de los Castros s/n., 39005 Santander, Spain

Abstract

The spectral problem for the diffusion operator is considered in a domain containing thin tubes. A new version of the method of partial asymptotic decomposition of the domain is introduced to reduce the dimension inside the tubes. It truncates the tubes at some small distance from the ends of the tubes and replaces the tubes with segments. At the interface of the three-dimensional and one-dimensional subdomains, special junction conditions are set: the pointwise continuity of the flux and the continuity of the average over a cross-section of the eigenfunctions. The existence of the discrete spectrum is proved for this partially reduced problem of the hybrid dimension. The conditions of the closeness of two spectra, i.e., of the diffusion operator in the full-dimensional domain and the partially reduced one, are obtained.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference28 articles.

1. Method of asymptotic partial decomposition of domain;Panasenko;Math. Model. Methods Appl. Sci.,1998

2. Asymptotic analysis of bar systems. I;Panasenko;Russ. J. of Math. Phys.,1994

3. Panasenko, G. (2005). Multi-Scale Modelling for Structures and Composites, Springer.

4. Method of asymptotic partial domain decomposition for non-steady problems: Heat equation on a thin structure;Panasenko;Math. Commun.,2014

5. Method of asymptotic partial decomposition of domain for spectral problems in rod structures;Panasenko;J. Math. Pures Appl.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3