1. Arapogianni, A., Genachte, A., Ochagavia, R., Vergara, J., Castell, D., Tsouroukdissian, A., Korbijn, J., Bolleman, N., Huera-Huarte, F., Schuon, F., Ugarte, A., Sandberg, J., De Laleu, V., Maciel, J., Tunbjer, A., Roth, R., De La Gueriviere, P., Coulombeau, P., Jadrec, S., Philippe, C., Voutsinas, S., Weinstein, A., Vita, L., Byklum, E., Hurley, W. and Grubel, H., 2013. Deep Water: The Next Step for Offshore Wind Energy, European Wind Energy Association, Brussels.
2. Chenu, B., Morris-Thomas, M.T. and Thiagarajan, K.P., 2004. Some hydrodynamic characteristics of an air-cushion supported concrete gravity structure, Proceedings of the 15th Australasian Fluid Mechanics Conference, Sydney.
3. Ding, H.Y., Han, Y.Q., Le, C.H. and Zhang, P.Y., 2017. Dynamic analysis of a floating wind turbine in wet tows based on multi-body dynamics, Journal of Renewable and Sustainable Energy, 9(3), 033301.
4. Ding, H.Y., Hu, R.Q., Le, C.H. and Zhang, P.Y., 2019a. Towing operation methods of offshore integrated meteorological mast for offshore wind farms, Journal of Marine Science and Engineering, 7(4), 100.
5. Ren, Y., Vengatesan, V. and Shi, W., 2022. Dynamic analysis of a multi-column TLP floating offshore wind turbine with tendon failure scenarios, Ocean Engineering, 245, 110472.