A Numerical Model for the Scour Effect on the Bearing Capacity of an Offshore Wind Turbine with a Five-Bucket Jacket Foundation

Author:

Zhu Hang12ORCID,Lian Jijian123,Guo Yaohua12ORCID,Wang Haijun12

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300072, China

2. School of Civil Engineering, Tianjin University, Tianjin 300072, China

3. School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

Abstract

As offshore wind farms move into deeper waters and the capacity of offshore wind turbines (OWTs) increases, a new type of OWT foundation needs to be developed. In this study, a new type of five-bucket jacket foundation (FBJF) was proposed based on the broad application of a multi-bucket jacket foundation (MBJF) in offshore wind farms. The soil around the OWT foundation is subject to scour due to the complex marine environment. To investigate the effects of scouring on the FBJF, a series of local-scour simplified finite-element models of the FBJF were established using ABAQUS, and the effects of scouring depth and the extent on the bearing capacity of the FBJF with the monotonic load were analyzed. Then, the failure envelopes of the FBJF under combined loading were obtained using the fixed-displacement ratio method, and the effects of various scour conditions on the failure envelopes were compared. The results indicate that the failure envelope profile contracts inward, and the bearing capacity decreases with the increasing scouring depth and extent. Furthermore, the failure envelopes of the FBJF under different vertical loads were calculated, and the FV-FH-FM failure envelopes of the FBJF were obtained through interpolation. Finally, the effects of different scour conditions on the FV-FH-FM failure envelopes of the FBJF were analyzed. The results show that the FV-FH-FM failure envelopes of the FBJF have similar profiles and follow the same trend under different scour conditions.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3