Fork–join and redundancy systems with heavy-tailed job sizes

Author:

Raaijmakers YouriORCID,Borst Sem,Boxma Onno

Abstract

AbstractWe investigate the tail asymptotics of the response time distribution for the cancel-on-start (c.o.s.) and cancel-on-completion (c.o.c.) variants of redundancy-d scheduling and the fork–join model with heavy-tailed job sizes. We present bounds, which only differ in the pre-factor, for the tail probability of the response time in the case of the first-come first-served discipline. For the c.o.s. variant, we restrict ourselves to redundancy-d scheduling, which is a special case of the fork–join model. In particular, for regularly varying job sizes with tail index-$$\nu $$ ν the tail index of the response time for the c.o.s. variant of redundancy-d equals -$$\min \{d_{\mathrm {cap}}(\nu -1),\nu \}$$ min { d cap ( ν - 1 ) , ν } , where $$d_{\mathrm {cap}} = \min \{d,N-k\}$$ d cap = min { d , N - k } , N is the number of servers and k is the integer part of the load. This result indicates that for $$d_{\mathrm {cap}} < \frac{\nu }{\nu -1}$$ d cap < ν ν - 1 the waiting time component is dominant, whereas for $$d_{\mathrm {cap}} > \frac{\nu }{\nu -1}$$ d cap > ν ν - 1 the job size component is dominant. Thus, having $$d = \lceil \min \{\frac{\nu }{\nu -1},N-k\} \rceil $$ d = min { ν ν - 1 , N - k } replicas is sufficient to achieve the optimal asymptotic tail behavior of the response time. For the c.o.c. variant of the fork–join ($$n_{\mathrm {F}},n_{\mathrm {J}}$$ n F , n J ) model, the tail index of the response time, under some assumptions on the load, equals $$1-\nu $$ 1 - ν and $$1-(n_{\mathrm {F}}+1-n_{\mathrm {J}})\nu $$ 1 - ( n F + 1 - n J ) ν , for identical and i.i.d. replicas, respectively; here, the waiting time component is always dominant.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Management Science and Operations Research,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3