Abstract
AbstractThe H-derivative of the expected supremum of fractional Brownian motion $$\{B_H(t),t\in {\mathbb {R}}_+\}$$
{
B
H
(
t
)
,
t
∈
R
+
}
with drift $$a\in {\mathbb {R}}$$
a
∈
R
over time interval [0, T] $$\begin{aligned} \frac{\partial }{\partial H} {\mathbb {E}}\Big (\sup _{t\in [0,T]} B_H(t) - at\Big ) \end{aligned}$$
∂
∂
H
E
(
sup
t
∈
[
0
,
T
]
B
H
(
t
)
-
a
t
)
at $$H=1$$
H
=
1
is found. This formula depends on the quantity $${\mathscr {I}}$$
I
, which has a probabilistic form. The numerical value of $${\mathscr {I}}$$
I
is unknown; however, Monte Carlo experiments suggest $${\mathscr {I}}\approx 0.95$$
I
≈
0.95
. As a by-product we establish a weak limit theorem in C[0, 1] for the fractional Brownian bridge, as $$H\uparrow 1$$
H
↑
1
.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Narodowe Centrum Nauki
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Management Science and Operations Research,Computer Science Applications
Reference25 articles.
1. Azmoodeh, E., Sottinen, T., Viitasaari, L., Yazigi, A.: Necessary and sufficient conditions for Hölder continuity of Gaussian processes. Statist. Probab. Lett. 94, 230–235 (2014)
2. Billingsley, P.: Convergence of probability measures. Wiley, New York (1968)
3. Billingsley, P.: Probability and Measure. Wiley, New York (1986)
4. Bisewski, K.: Lower bound for the expected supremum of fractional Brownian motion using coupling. arXiv preprint arXiv:2201.00706, (2022)
5. Bisewski, K., Dȩbicki, K., Mandjes, M.: Bounds for expected supremum of fractional Brownian motion with drift. J. Appl. Probab. 58(2), 411–427 (2021)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献