Abstract
AbstractWe study critical GI/G/1 queues under finite second-moment assumptions. We show that the busy-period distribution is regularly varying with index half. We also review previously known M/G/1/ and M/M/1 derivations, yielding exact asymptotics as well as a similar derivation for GI/M/1. The busy-period asymptotics determine the growth rate of moments of the renewal process counting busy cycles. We further use this to demonstrate a Balancing Reduces Asymptotic Variance of Outputs (BRAVO) phenomenon for the work-output process (namely the busy time). This yields new insight on the BRAVO effect. A second contribution of the paper is in settling previous conjectured results about GI/G/1 and GI/G/s BRAVO. Previously, infinite buffer BRAVO was generally only settled under fourth-moment assumptions together with an assumption about the tail of the busy period. In the current paper, we strengthen the previous results by reducing to assumptions to existence of $$2+\epsilon $$
2
+
ϵ
moments.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Management Science and Operations Research,Computer Science Applications