On the behavior in time of solutions to motion of Non-Newtonian fluids

Author:

Moscariello Gioconda,Porzio Maria MichaelaORCID

Abstract

AbstractWe study the behavior on time of weak solutions to the non-stationary motion of an incompressible fluid with shear rate dependent viscosity in bounded domains when the initial velocity $${u}_0 {\in } {L}^2$$ u 0 L 2 . Our estimates show the different behavior of the solution as the growth condition of the stress tensor varies. In the “dilatant” or “shear thickening” case we prove that the decay rate does not depend on $$u_0$$ u 0 , then our estimates also apply for irregular initial velocity.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference21 articles.

1. Astarita, G., Marrucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London (1974)

2. Batchelor, G.K.: An Introduction to Fluid Mechanics. Cambridge University Press, Cambridge (1967)

3. Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymer Liquids, vol. 1: Fluid Mechanics, 2nd edn. Wiley, New York (1987)

4. Dong, Bo-Qing, Chen, Zhi-Min: Time decay rates of non-Newtonian flows in $${\mathbb{R}}^n_+$$. J. Math. Anal. Appl. 324, 820–833 (2006)

5. Diening, L., R$$\dot{u}$$z̆ic̆ka, M., Wolf, J.: Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) IX, 1–46 (2010)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time decay of solutions for compressible isentropic non-Newtonian fluids;Boundary Value Problems;2024-01-03

2. Regularizing effect of the interplay between coefficients in some parabolic equations;AIP Conference Proceedings;2023

3. On a class of nonlinear partial differential equations of parabolic type;INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020;2022

4. Nonlinear evolution problems with singular coefficients in the lower order terms;Nonlinear Differential Equations and Applications NoDEA;2021-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3