Abstract
AbstractWe consider a Cauchy–Dirichlet problem for a quasilinear second order parabolic equation with lower order term driven by a singular coefficient. We establish an existence result to such a problem and we describe the time behavior of the solution in the case of the infinite–time horizon.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference23 articles.
1. Alvino, A.: Sulla disuguaglianza di Sobolev in Spazi di Lorentz, Boll. Un. Mat. It. A (5)14, 148-156 (1977)
2. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, London (1988)
3. Boccardo, L., Orsina, L., Porretta, A.: Some noncoercive parabolic equations with lower order terms in divergence form. J. Evol. Equ. 3, 407–418 (2003)
4. Boccardo, L., Orsina, L., Porzio, M.M.: Regularity results and asymptotic bahavior for a noncoercive parabolic problem. J. Evol. Equ. Published online, (2021)
5. Cardaliaguet, P., Lasry, J.-M., Lions, P.-L., Porretta, A.: Long time average of mean field games. Netw. Heterog. Media 7(2), 279–301 (2012)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献