Author:
Farroni Fernando,Manzo Gianluigi
Abstract
AbstractWe prove the Lewy–Stampacchia’s inequality for elliptic variational inequalities with obstacle involving Leray–Lions type operator whose simpler model case is given by the following $$\begin{aligned} u \in W^{1,N}_0(\Omega )\mapsto -\Delta _N u-\text {div}\left( B (x) |u|^{N-2}u \right) \end{aligned}$$
u
∈
W
0
1
,
N
(
Ω
)
↦
-
Δ
N
u
-
div
B
(
x
)
|
u
|
N
-
2
u
where $$\Omega $$
Ω
is a smooth bounded domain of $$\mathbb {R}^N$$
R
N
with $$N\geqslant 2$$
N
⩾
2
, $$\Delta _N u$$
Δ
N
u
denotes the classical N–Laplacian operator and the coefficient $$B:\Omega \rightarrow \mathbb {R}^N$$
B
:
Ω
→
R
N
belongs to a suitable Lorentz–Zygmund space. For this kind of obstacle problems, we also provide regularity results and amongst them we give sufficient conditions to get boundedness of solutions.
Funder
Università degli Studi di Napoli Federico II
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Angrisani, F., Ascione, G., Manzo, G.: Atomic decomposition of finite signed measures on compacts of $$\mathbb{R} ^n$$. Ann. Fenn. Math. 46(2), 643–654 (2021)
2. Ascione, G., Manzo, G.: o-O structure of some rearrangement invariant Banach function spaces. J. Ellipt. Parabol. Equ. 6, 1–23 (2020)
3. Bennett, C., Rudnick, K.: On Lorentz–Zygmund spaces. Dissertationes Math. (Rozprawy Mat.) vol. 175, p. 67 (1980)
4. Boccardo, L.: Dirichlet problems with singular convection terms and applications. J. Differ. Equ. 258(7), 2290–2314 (2015)
5. Boccardo, L., Cirmi, G.R., Rodrigues, J.F.: On obstacle problems for non coercive linear operators. J. Ellip. Parabol. Equ. 8, 1–23 (2022)