Quantifying the 3D structure and function of porosity and pore space in natural sediment flocs

Author:

Lawrence T. J.ORCID,Carr S. J.,Wheatland J. A. T.,Manning A. J.,Spencer K. L.

Abstract

Abstract Purpose Flocculated cohesive suspended sediments (flocs) play an important role in all aquatic environments, facilitating the transport and deposition of sediment and associated contaminants with consequences for aquatic health, material fluxes, and morphological evolution. Accurate modelling of the transport and behaviour of these sediments is critical for a variety of activities including fisheries, aquaculture, shipping, and waste and pollution management and this requires accurate measurement of the physical properties of flocs including porosity. Methods Despite the importance of understanding floc porosity, measurement approaches are indirect or inferential. Here, using μCT, a novel processing and analysis protocol, we directly quantify porosity in natural sediment flocs. For the first time, the complexity of floc pore spaces is observed in 3-dimensions, enabling the identification and quantification of important pore space and pore network characteristics, namely 3D pore diameter, volume, shape, tortuosity, and connectivity. Results We report on the complexity of floc pore space and differentiate effective and isolated pore space enabling new understanding of the hydraulic functioning of floc porosity. We demonstrate that current methodological approaches are overestimating floc porosity by c. 30%. Conclusion These new data have implications for our understanding of the controls on floc dynamics and the function of floc porosity and can improve the parameterisation of current cohesive sediment transport models.

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3