Determination of sediment sources following a major wildfire and evaluation of the use of color properties and polycyclic aromatic hydrocarbons (PAHs) as tracers

Author:

Kieta K. A.ORCID,Owens P. N.ORCID,Petticrew E. L.ORCID

Abstract

Abstract Purpose This research aimed to determine if a severe wildfire caused changes in the source of sediment being delivered to downstream aquatic systems and evaluate the use of polycyclic aromatic hydrocarbons (PAHs) and color properties as tracers. Methods Sediment samples were collected from 2018 to 2021 in three tributaries impacted by the 2018 Shovel Lake wildfire and from two sites on the mainstem of the Nechako River, British Columbia. Source samples were collected from burned and unburned soils as well as from channel banks and road-deposited sediment. Samples were analyzed for color properties and for the 16 US Environmental Protection Agency priority PAHs. After statistical tests to determine the conservatism and ability to discriminate between sources by the tracers, the MixSIAR unmixing model was used, and its outputs were tested using virtual mixtures. Result In the tributaries, burned topsoil was an important contributor to sediment (up to 50%). The mainstem Nechako River was not influenced as significantly by the fires as the greatest contributor was banks (up to 89%). The color properties provided more realistic results than those based on PAHs. Conclusion In smaller watersheds, the wildfire had a noticeable impact on sediment sources, though the impacts of the fire seemed to be diluted in the distal mainstem Nechako River. Color tracers behaved conservatively and discriminated between contrasting sources. Due to their low cost and reliability, they should be considered more widely. While PAHs did not work in this study, there are reasons to believe they could be a useful tracer, but more needs to be understood about their behavior and degradation over time.

Funder

Natural Sciences and Engineering Research Council of Canada

Nechako Environmental Enhancement Fund Society

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3