Trait driven or neutral: understanding the change in functional trait diversity during early plant succession using Price partitions

Author:

Ulrich WernerORCID,Zaplata Markus KlemensORCID

Abstract

AbstractHabitat filtering, species interactions and neutral colonization as well as extinction dynamics govern the sequence of community assembly and functional diversity (FD) during primary plant succession. To study the factors that influence changes in FD we here use data on plant seed size, seed numbers and specific leaf area from 107 study plots along a 7 year sequence of primary succession (2005–2011) in a 6 ha German artificial catchment. We show that the temporal variability in functional diversity can be partitioned into the effects of trait expression, species richness and plant cover. We observed a dominant role of species richness and community composition on FD. Trade-offs in the influence of species richness and plant cover tended to decrease the change in FD. Average FD steadily increased during the first 4 years of succession (2005–2008). The degree of annual changes in FD were highly plot specific. Average change in FD was comparatively low during the first 4 years and later high. Soil characteristics and light conditions did not significantly influence the detectable change in functional diversity. We conclude that the high plot-specific spatial variability of the annual changes in FD transformed the initially catchment-wide homogeneous distribution of plant species into a mosaic of very different local plant communities. Our partitioning results also indicate that the successional sequences in FD are in accordance with a hidden Markov series.

Funder

Narodowym Centrum Nauki

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3