Multi-fluid modelling of bubbly channel flows with an adaptive multi-group population balance method

Author:

Papoulias D.,Vichansky A.,Tandon M.

Abstract

AbstractMass, momentum, and energy transfer in bubbly flows strongly depends on the bubble’s size distribution, which determines the contact area between the interacting phases. Characterization of bubble sizes in polydisperse flows requires empirical modelling of sub-grid physical mechanisms such as break-up and coalescence. In the present work an adaptive multiple size-group (A-MuSiG) method is incorporated into the Eulerian multiphase solver available in Simcenter STAR-CCM+ in order to model polydisperse bubbly flows in horizontal and vertical channels. The disperse phasespace is discretized into multiple size-groups each represented by its own size, number-density, and velocity field. The diameter of the bubbles in each of the size-groups varies in time and space, dynamically adapting to the local flow conditions. The interphase momentum transfer between the continuous phase and polydisperse bubbles is modelled through drag, virtual mass, turbulent dispersion, and lift forces. For modelling sub-grid bubble break-up and coalescence processes, different phenomenological kernels are evaluated. The empirical parameters of the adopted kernels are calibrated in two steps. The initial stage of the analysis considers experimental channel flows at low Reynolds number and zero-gravity conditions, under which the bubble size distribution is solely dependent on coalescence. As part of the second phase of the evaluation, additional parametric simulations in turbulent channel flows are performed in order to calibrate the break-up models, assuming the coalescence scaling constants derived in the previous step. The obtained results demonstrate that in flows with high turbulent mixing the ensuing bubble dynamics are strongly coupled to the internal properties of the population, which in turn influence the developing multiphase interactions in a transient manner.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3