Investigation of Wall Boiling Closure, Momentum Closure and Population Balance Models for Refrigerant Gas–Liquid Subcooled Boiling Flow in a Vertical Pipe Using a Two-Fluid Eulerian CFD Model

Author:

Shaparia Nishit1,Pelay Ugo1,Bougeard Daniel1,Levasseur Aurélien2,François Nicolas2,Russeil Serge1ORCID

Affiliation:

1. IMT Nord Europe, Institut Mines-Telecom, Univ. Lille, Center for Energy and Environement, 59000 Lille, France

2. VALEO Thermal Systems, 78321 La Verrière, France

Abstract

The precise design of heat exchangers in automobile air conditioning systems for more sustainable electric vehicles requires an enhanced assessment of CFD mechanistic models for the subcooled boiling flow of pure eco-friendly refrigerant. Computational Multiphase Flow Dynamics (CMFDs) relies on two-phase closure models to accurately depict the complex physical phenomena involved in flow boiling. This paper thoroughly examines two-phase CMFD flow boiling, incorporating sensitivity analyses of critical parameters such as boiling closures, momentum closures, and population balance models. Three datasets from the DEBORA experiment, involving vertical pipes with subcooled boiling flow of refrigerant at three different pressures and varying levels of inlet liquid subcooling, are used for comparison with CFD simulations. This study integrates nucleate site density and bubble departure diameter models to enhance wall boiling model accuracy. It aims to investigate various interfacial forces and examines the S-Gamma and Adaptive Multiple Size-Group (A-MuSiG) size distribution methods for their roles in bubble break up and coalescence. These proposed approaches demonstrate their efficacy, contributing to a deeper understanding of flow boiling phenomena and the development of more accurate models. This investigation offers valuable insights into selecting the most appropriate sub-closure models for both boiling closure and momentum closure in simulating boiling flows.

Funder

VALEO

ARMINES

IMT Nord Europe

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3