Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films
-
Published:2024-08-09
Issue:6
Volume:19
Page:
-
ISSN:2095-0462
-
Container-title:Frontiers of Physics
-
language:en
-
Short-container-title:Front. Phys.
Author:
Li Xuqi,Chen Xuyan,Sun Shiyang,Zhang Huihui,Sang Haidan,Wang Xiaonan,Qi Shifei,Qiao Zhenhua
Abstract
AbstractThe exploration of magnetism in two-dimensional layered materials has attracted extensive research interest. For the monoclinic phase CrI3 with interlayer antiferromagnetism, finding a static and robust way of realizing the intrinsic interlayer ferromagnetic coupling is desirable. In this work, we study the electronic structure and magnetic properties of the nonmagnetic element (e.g., O, S, Se, N, P, As, and C) doped bi-and triple-layer CrI3 systems via first-principles calculations. Our results demonstrate that O, P, S, As, and Se doped CrI3 bilayer can realize interlayer ferromagnetism. Further analysis shows that the interlayer ferromagnetic coupling in the doped few-layer CrI3 is closely related to the formation of localized spinpolarized state around the doped elements. Further study presents that, for As-doped tri-layer CrI3, it can realize interlayer ferromagnetic coupling. This work proves that nonmagnetic element doping can realize the interlayer ferromagnetically-coupled few-layer CrI3 while maintaining its semiconducting characteristics without introducing additional carriers.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017) 2. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017) 3. Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018) 4. M. Gibertini, M. Koperski, A. F. Morpurgo, and K. S. Novoselov, Magnetic 2D materials and heterostructures, Nat. Nanotechnol. 14(5), 408 (2019) 5. D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire, W. Yao, D. Xiao, K. M. C. Fu, and X. Xu, Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics, Sci. Adv. 3(5), e1603113 (2017)
|
|