A Deep Learning based Scalable and Adaptive Feature Extraction Framework for Medical Images

Author:

Loukil Zainab,Mirza Qublai Khan Ali,Sayers Will,Awan Irfan

Abstract

AbstractFeatures extraction has a fundamental value in enhancing the scalability and adaptability n of medical image processing framework. The outcome of this stage has a tremendous effect on the reliability of the medical application being developed, particularly disease classification and prediction. The challenging side of features extraction frameworks, in relation to medical images, is influenced by the anatomical and morphological structure of the image which requires a powerful extraction system that highlights high- and low- level features. The complementary of both feature types reinforces the medical image content-based retrieval and allows to access visible structures as well as an in-depth understanding of related deep hidden components. Several existing techniques have been used towards extracting high- and low-level features separately, including Deep Learning based approaches. However, the fusion of these features remains a challenging task. Towards tackling the drawback caused by the lack of features combination and enhancing the reliability of features extraction methods, this paper proposes a new hybrid features extraction framework that focuses on the fusion and optimal selection of high- and low-level features. The scalability and reliability of the proposed method is achieved by the automated adjustment of the final optimal features based on real-time scenarios resulting an accurate and efficient medical images disease classification. The proposed framework has been tested on two different datasets to include BraTS and Retinal sets achieving an accuracy rate of 97% and 98.9%, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Information Systems,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cloud, IoT and Data Science;Information Systems Frontiers;2024-07-25

2. Detection of autism spectrum disorder using multi‐scale enhanced graph convolutional network;Cognitive Computation and Systems;2024-06-21

3. Cancer Guard: Early Detection of Breast Cancer;Journal of Soft Computing Paradigm;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3