Detection of autism spectrum disorder using multi‐scale enhanced graph convolutional network

Author:

Singh Uday1ORCID,Shukla Shailendra1,Gore Manoj Madhava1

Affiliation:

1. Computer Science and Engineering Department Motilal Nehru National Institute of Technology Allahabad Uttar Pradesh India

Abstract

AbstractMagnetic Resonance Imaging (MRI) based Autism Spectrum Disorder (ASD) detection approaches face various challenges due to variations in brain connectivity patterns, limited sample sizes, and heterogeneity of available data. These challenges make it hard to find consistent imaging markers. To address these issues, researchers have focused on advanced analysis methods, such as multi‐modal imaging techniques and graph‐based approaches to gain a comprehensive understanding of ASD neurobiology. However, existing graph‐based approaches for ASD detection have primarily focused on pairwise similarities between individuals, neglecting individual characteristics and features. A novel framework to detect ASD using a Multi‐Scale Enhanced Graph Convolutional Network (MSE‐GCN). The framework combines the functional connectivity of resting‐state functional MRI (rs‐fMRI) with non‐imaging phenotype data from Autism Brain Imaging Data Exchange‐I (ABIDE‐I). The framework uses MSE‐GCN to represent individuals as node in a population graph. Each node corresponds to an individual and connects to feature vectors from imaging data. Edge weights between nodes are assigned to integrate phenotypic information. Then, the multiple parallel GCN layers are designed using random walk embedding. The output of these GCN layers is then combined in the fully connected layer to detect ASD effectively. The performance of the framework is evaluated using the ABIDE‐I dataset. In addition, Recursive Feature Elimination and Multilayer Perceptron are utilised for feature selection. The outcome of this approach shows more than 10% advancement in accuracy, achieving an accuracy of 83% by incorporating phenotypic data in conjunction with MRI data within a GCN.

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3