Snakes and Ladders: Unpacking the Personalisation-Privacy Paradox in the Context of AI-Enabled Personalisation in the Physical Retail Environment

Author:

Canhoto Ana IsabelORCID,Keegan Brendan James,Ryzhikh Maria

Abstract

Abstract Artificial intelligence (AI) is expected to bring to the physical retail environment the kind of mass personalisation that is already common in online commerce, delivering offers that are targeted to each customer, and that adapt to changes in the customer’s context. However, factors related to the in-store environment, the small screen where the offer is delivered, and privacy concerns, create uncertainty regarding how customers might react to highly personalised offers that are delivered to their smartphones while they are in a store. To investigate how customers exposed to this type of AI-enabled, personalised offer, perceive it and respond to it, we use the personalisation-privacy paradox lens. Case study data focused on UK based, female, fashion retail shoppers exposed to such offers reveal that they seek discounts on desired items and improvement of the in-store experience; they resent interruptions and generic offers; express a strong desire for autonomy; and attempt to control access to private information and to improve the recommendations that they receive. Our analysis also exposes contradictions in customers’ expectations of personalisation that requires location tracking. We conclude by drawing an analogy to the popular Snakes and Ladders game, to illustrate the delicate balance between drivers and barriers to acceptance of AI-enabled, highly personalised offers delivered to customers’ smartphones while they are in-store.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Information Systems,Theoretical Computer Science,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3