The mechanism of resistance in Escherichia coli to ridinilazole and other antibacterial head-to-head bis-benzimidazole compounds

Author:

Dale Aaron G.,Porcu Alessandra,Mann John,Neidle StephenORCID

Abstract

AbstractThe appY gene has been characterised as conferring resistance to a novel series of antimicrobial benzimidazole derivatives in E. coli MC1061 cells when expressed in high copy-number. A microarray approach was used to identify genes involved in the mechanism of appY-mediated antibacterial resistance, that were up- or down-regulated following induction of the gene in the appY knockout strain JW0553. In total, expression of 90 genes was induced and 48 repressed greater than 2.5-fold (P < 0.05), 45 min after appY induction. Over half the genes up-regulated following appY expression had confirmed or putative roles in acid resistance (AR) and response to oxidative and antibiotic stresses. These included the genes for MdtE and MdtF, which form a multi-drug transporter with TolC and have been implicated in resistance to several antibiotics including erythromycin. Amongst the acid resistance genes were gadAB and adiAC encoding the glutamate-dependant (AR2) and arginine-dependant (AR3) acid resistance systems respectively, in addition to the transcriptional activators of these systems gadE and gadX. In agreement with earlier studies, appA, appCB and hyaA-F were also up-regulated following induction of appY. This study has also confirmed that over-expression of mdtEF confers resistance to these antibacterial benzimidazoles, indicating that the observation of appY conferring resistance to these compounds, proceeds through an appY-mediated up-regulation of this efflux transporter. To assess the importance of the AppY enzyme to acid stress responses, the percentage survival of bacteria in acidified media (pH ≤ 2) was measured. From an initial input of 1 × 106 CFU/ml, the wild-type strain MG1655 showed 7.29% and 0.46% survival after 2 and 4 h, respectively. In contrast, strain JW0553 in which appY is deleted was completely killed by the treatment. Transformation of JW0553 with a plasmid carrying appY returned survival to wild-type levels (7.85% and 1.03% survival at 2 and 4 h). Further dissection of the response by prior induction of each of the three AR systems has revealed that AR1 and AR3 were most affected by the absence of appY. This work highlights an important and previously unidentified role for the AppY enzyme in mediating the responses to several stress conditions. It is likely that the appY gene fits into a complex transcriptional regulatory network involving σS and gadE and gadX. Further work to pinpoint its position in such a hierarchy and to assess the contribution of appY to oxidative stress responses should help determine its full significance. This work is also consistent with recent studies in C. difficile showing that the mechanism of action of ridinilazole involves AT-rich DNA minor groove binding.

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Pharmacology, Toxicology and Pharmaceutics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3