Evaluation of mesostructured silica materials with different structures and morphologies as carriers for quercetin and naringin encapsulation

Author:

Morante-Zarcero SoniaORCID,Endrino Alba,Casado NataliaORCID,Pérez-Quintanilla DamiánORCID,Sierra IsabelORCID

Abstract

AbstractTwo mesostructured silicas with wormhole-like pore arrangement (HMS and MSU-2) were synthesized and evaluated for the first time as carriers for the encapsulation of two bioactive flavonoids (quercetin and naringin). For comparative purposes, a hexagonal mesostructured SBA-15 silica type frequently used as encapsulating support was also prepared and tested. All the materials were characterized before and after the loading with the analytes. Different silica/analyte ratios were evaluated to determine the loading and encapsulation kinetics of the different materials. Both flavonoids were successfully loaded inside the pores of the three silicas. The quercetin loading capacity of HMS was higher than SBA-15 and MSU-2 silicas, whereas for naringin SBA-15 and MSU-2 were slightly more effective. These differences could be attributed to the molecular size of the analytes and the textural properties of the different materials. Nevertheless, HMS was the silica that enabled to release the highest amount of both analytes. Thus, it could be considered a suitable carrier of these flavonoids and an alternative to other materials such as SBA-15. Moreover, the release process was performed under controlled conditions (pH 2.0 and 7.4) to simulate digestive conditions. Quercetin was delivered faster and more efficiently from the encapsulated at pH 2.0, whereas no differences were observed for naringin at both pHs. Finally, the antioxidant activity of the resulting encapsulates was determined. The results obtained suggested the potential use of wormhole-like mesostructured silicas as carriers to enhance the stability and bioavailability of flavonoids, so they can be used in future food and biomedical applications.

Funder

Comunidad de Madrid and European funding from FSE and Feder programs

Universidad Rey Juan Carlos

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3