The cognitive comparison enhanced hierarchical clustering

Author:

Guan Chun,Yuen Kevin Kam FungORCID

Abstract

AbstractThe growth of online shopping is rapidly changing the buying behaviour of consumers. Today, there are challenges facing buyers in the selection of a preferred item from the numerous choices available in the market. To improve the consumer online shopping experience, recommender systems have been developed to reduce the information overload. In this paper, a cognitive comparison-enhanced hierarchical clustering (CCEHC) system is proposed to provide personalised product recommendations based on user preferences. A novel rating method, cognitive comparison rating (CCR), is applied to weigh the product attributes and measure the categorical scales of attributes according to expert knowledge and user preferences. Hierarchical clustering is used to cluster the products into different preference categories. The CCEHC model can be used to rank and cluster product data with the input of user preferences and produce reliable customised recommendations for the users. To demonstrate the advantages of the proposed model, the CCR method is compared with the rating approach of the analytic hierarchy process. Two recommendation cases are demonstrated in this paper with two datasets, one collected by this research for laptop recommendation and the other an open dataset for workstation recommendation. The simulation results demonstrate that the proposed system is feasible for providing personalised recommendations. The significance of this research is the provision of a recommendation solution that does not depend on historical purchase records; rather, one wherein the users’ rating preferences and expert knowledge, both of which are measured by CCR, is considered. The proposed CCEHC model could be further applied to other types of similar recommendation cases such as music, books, and movies.

Funder

Shanghai Municipal Science and Technology Major Project

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3