Abstract
AbstractA comparison of neural network clustering (NNC) and hierarchical clustering (HC) is conducted to assess computing dominance of two machine learning (ML) methods for classifying a populous data of large number of variables into clusters. An accurate clustering disposition is imperative to investigate assembly-influence of predictors on a system over a course of time. Moreover, categorically designated representation of variables can assist in scaling down a wide data without loss of essential system knowledge. For NNC, a self-organizing map (SOM)-training was used on a local aqua system to learn distribution and topology of variables in an input space. Ternary features of SOM; sample hits, neighbouring weight distances and weight planes were investigated to institute an optical inference of system’s structural attributes. For HC, constitutional partitioning of the data was executed through a coupled dissimilarity-linkage matrix operation. The validation of this approach was established through a higher value of cophenetic coefficient. Additionally, an HC-feature of stem-division was used to determine cluster boundaries. SOM visuals reported two locations’ samples for remarkable concentration analogy and presence of 4 extremely out of range concentration parameter from among 16 samples. NNC analysis also demonstrated that singular conduct of 18 independent components over a period of time can be comparably inquired through aggregate influence of 6 clusters containing these components. However, a precise number of 7 clusters was retrieved through HC analysis for segmentation of the system. Composing elements of each cluster were also distinctly provided. It is concluded that simultaneous categorization of system’s predictors (water components) and inputs (locations) through NNC and HC is valid to the precision probability of 0.8, as compared to data segmentation conducted with either of the methods exclusively. It is also established that cluster genesis through combined HC’s linkage and dissimilarity algorithms and NNC is more reliable than individual optical assessment of NNC, where varying a map size in SOM will alter the association of inputs’ weights to neurons, providing a new consolidation of clusters.
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献