Comparison of hierarchical clustering and neural network clustering: an analysis on precision dominance

Author:

Shahid Nazish

Abstract

AbstractA comparison of neural network clustering (NNC) and hierarchical clustering (HC) is conducted to assess computing dominance of two machine learning (ML) methods for classifying a populous data of large number of variables into clusters. An accurate clustering disposition is imperative to investigate assembly-influence of predictors on a system over a course of time. Moreover, categorically designated representation of variables can assist in scaling down a wide data without loss of essential system knowledge. For NNC, a self-organizing map (SOM)-training was used on a local aqua system to learn distribution and topology of variables in an input space. Ternary features of SOM; sample hits, neighbouring weight distances and weight planes were investigated to institute an optical inference of system’s structural attributes. For HC, constitutional partitioning of the data was executed through a coupled dissimilarity-linkage matrix operation. The validation of this approach was established through a higher value of cophenetic coefficient. Additionally, an HC-feature of stem-division was used to determine cluster boundaries. SOM visuals reported two locations’ samples for remarkable concentration analogy and presence of 4 extremely out of range concentration parameter from among 16 samples. NNC analysis also demonstrated that singular conduct of 18 independent components over a period of time can be comparably inquired through aggregate influence of 6 clusters containing these components. However, a precise number of 7 clusters was retrieved through HC analysis for segmentation of the system. Composing elements of each cluster were also distinctly provided. It is concluded that simultaneous categorization of system’s predictors (water components) and inputs (locations) through NNC and HC is valid to the precision probability of 0.8, as compared to data segmentation conducted with either of the methods exclusively. It is also established that cluster genesis through combined HC’s linkage and dissimilarity algorithms and NNC is more reliable than individual optical assessment of NNC, where varying a map size in SOM will alter the association of inputs’ weights to neurons, providing a new consolidation of clusters.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3