Nature-inspired framework of ensemble learning for collaborative classification in granular computing context
Author:
Funder
University of Portsmouth
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Science Applications,Information Systems
Link
http://link.springer.com/content/pdf/10.1007/s41066-018-0122-5.pdf
Reference51 articles.
1. Borra S, Ciaccio AD (2002) Improving nonparametric regression methods by bagging and boosting. Comput Stat Data Anal 38(4):407–420
2. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
3. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
4. Chatterjee K, Kar S (2017) Unified granular-number-based ahp-vikor multi-criteria decision framework. Granul Comput 2(3):199–221
5. Chawla NV, Moore TE, Hall LO, Bowyer KW, Kegelmeyer WP, Springer C (2002) Distributed learning with bagging-like performance. Pattern Recogn Lett 24(1–3):455–471
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Ensemble Machine Learning for Multi-Class Classification Tasks;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13
2. An efficient edge/cloud medical system for rapid detection of level of consciousness in emergency medicine based on explainable machine learning models;Neural Computing and Applications;2023-03-15
3. OCEAn: Ordinal classification with an ensemble approach;Information Sciences;2021-11
4. 3-3FS: ensemble method for semi-supervised multi-label feature selection;Knowledge and Information Systems;2021-10-28
5. A generic MOT boosting framework by combining cues from SOT, tracklet and re-identification;Knowledge and Information Systems;2021-06-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3